

Probe Nr.: 250483394

Bodenmanagement: Auswertung Analysenergebnisse
Baustelle: B & B Sandgrube Haltern-Lavesum

Eigenüberwachung:

Fremdüberwachung:

Materialherkunft:

Thallium

PCB₇

PAK₁

Naphtalin & Methylnaphthl.

Labor:

Probenbezeichnung: MP Füllsand 0-20 mm

SGS Fresenius

Analyseumfang: Tab. 3 nach EBV

Materialwerte der MantelVO bis 10 Vol.-% mineralische Fremdbestandteile Zuordnung Einheit Ergebnisse Parameter BM-0 BM-0* BG-0 **BG-0*** Lehm, Schluff Sand Ton 10 20 mg/kg 20 BM-0 Arsen 20 5 40 70 100 140 BM-0 Blei mg/kg 8 Cadmium 0,4 1 1,5 1 BM-0 mg/kg <0,2 Chrom_{ges} mg/kg 30 60 100 120 BM-0 16 BM-0 20 40 60 80 Kupfer mg/kg 7,0 Nickel mg/kg 15 50 70 100 10 BM-0 Thallium mg/kg 0,5 1 1 1 <0,2 BM-0 Quecksilber 0,2 0,3 0,3 0,6 <0,1 BM-0 mg/kg 150 200 300 Zink mg/kg 60 28 BM-0 TOC 1¹⁾ 1¹⁾ 1¹⁾ 1¹⁾ (Masse-%) 0,1 BM-0 EOX 1 1 1 BM-0 mg/kg 1 <0,3 Kohlenwasserstoffe C₁₀₋₂₂ BM-0 300 12 mg/kg Kohlenwasserstoffe C₁₀₋₄₀ 600 BM-0 mg/kg <10 PCB mg/kg 0,05 0,05 0,05 0,1 n.n. BM-0 PAK mg/kg 3 3 3 6 BM-0 n.n. 0,3 0,3 <0,05 BM-0 Benzo(a)pyren mg/kg 0,3 Materialwerte der MantelVO bis 10 Vol.-% mineralische Fremdbestandteile Einheit Parameter Ergebnisse Zuordnung BM-0 BM-0* BG-0 **BG-0*** Sand Lehm, Schluff Ton el.Leitfähigkeit 350 173 μS/cm BM-0 Sulfat 250²⁾ 250²⁾ 250²⁾ 250 BM-0 mg/l 11 Arsen μg/l --8 (13)³⁾ <5 BM-0 Blei μg/l 23 (43)³⁾ <5 BM-0 Cadmium μg/l --2 (4)³⁾ <5 BM-0 Chromges <5 BM-0 μg/l 10 (19)³⁾ 20 (41)³⁾ Kupfer $\mu g/I$ <5 BM-0 Nickel 20 (31)³⁾ <5 BM-0 μg/l Quecksilber _ BM-0 μg/l 0,1 <0,03

	Anmerkungen				
1)	Stoffspezifischer Orientierungswert: Bei Abweichung ist die Ursache zu prüfen.				
2)	Bei Überschreitung ist die Ursache zu prüfen.				
3)	Die in Klammern genannten Werte gelten jeweils bei einem TOC-Gehalt ≥ 0,5 %.				
4)	PAK ₁₆ ohne Naphtalin und Methylnaphthaline.				

 $\mu g/I$

μg/l

μg/l

μg/l

μg/l

0,2 (0,3)3)

100 (210)3)

0,01

0,2

2

<0,06

<10

n.n.

0,021

<0,002

BM-0

BM-0

BM-0

BM-0

BM-0

Bodenmanagement:	Auswertung Analysenergebnisse
Baustelle:	B & B Sandgrube Haltern-Lavesum
Eigenüberwachung:	
Fremdüberwachung:	
Materialherkunft:	
Probenbezeichnung:	MP Füllsand 0 - 20 mm
Analyseumfang:	LAGA / TR Boden 2004

Labor: SGS Fresenius Probe Nr.: 250483394

	Zuordnungswerte Feststoffgehalte im Bodenmaterial								
Parameter	Dimen-		•	e für Verwei en Anwendu	_	Zuordnun eingeschrän technische	Ergebnis	max. Zuordnungs-	
	sion	Z 0 (Sand)	Z 0 (Lehm/ Schluff)	Z 0 (Ton)	Z 0* ¹⁾	Z 1	Z 2		wert
Arsen	mg/kg TS	10	15	20	15 ²⁾	45	150	5,00	Z 0
Blei	mg/kg TS	40	70	100	140	210	700	8,00	Z 0
Cadmium	mg/kg TS	0,4	1	1,5	1 ³⁾	3	10	<0,2	Z 0
Chrom (ges.)	mg/kg TS	30	60	100	120	180	600	16,00	Z 0
Kupfer	mg/kg TS	20	40	60	80	120	400	7,00	Z 0
Nickel	mg/kg TS	15	50	70	100	150	500	10,00	Z 0
Thallium	mg/kg TS	0,4	0,7	1	0,7 ⁴⁾	2,1	7	<0,2	Z 0
Quecksilber	mg/kg TS	0,1	0,5	1	1	1,5	5	<0,1	Z 0
Zink	mg/kg TS	60	150	200	300	450	1500	28,00	Z 0
TOC	(Masse-%)	0,5 (1,0)5)	0,5 (1,0) ⁵⁾	0,5 (1,0) ⁵⁾	0,5 (1,0) ⁵⁾	1,5	5	<0,1	Z 0
EOX	mg/kg TS	1	1	1	1 ⁶⁾	3 ⁶⁾	10	<0,3	Z 0
Kohlenwasserstoffe	mg/kg TS	100	100	100	200 (400) ⁷⁾	300 (600) ⁷⁾	1000 (2000) ⁷⁾	<10	Z 0
BTEX	mg/kg TS	1	1	1	1	1	1	n.n.	Z 0
LHKW	mg/kg TS	1	1	1	1	1	1	n.n.	Z 0
PCB	mg/kg TS	0,05	0,05	0,05	0,1	0,15	0,5	n.n.	Z 0
PAK	mg/kg TS	3	3	3	3	3 (9) ⁸⁾	30	n.n.	Z 0
Benzo(a)pyren	mg/kg TS	0,3	0,3	0,3	0,6	0,9	3	<0,05	Z 0
Cyanid (ges.)	mg/kg TS				·	3	10	<0,1	Z 0

Zuordnungswerte Eluatkonzentrationen im Bodenmaterial

Parameter	Dimen- sion	Zuordnungswerte für Verwendung in boden-ähnlichen Anwendungen	erwendung in boden-ähnlichen Einbau in technischen Bauwerken				max. Zuordnungs- wert	
		Z 0/Z 0*	Z 1.1	Z 1.2	Z 2		weit	
pH-Wert		6,5-9,5	6,5-9,5	6-12	5,5-12	8,40	Z 0	
el.Leitfähigkeit	μS/cm	250	250	1500	2000	83,00	Z 0	
Chlorid	mg/l	30	30	50	100 ⁹⁾	<2	Z 0	
Sulfat	mg/l	20	20	50	200	<5	Z 0	
Cyanid (ges.)	μg/l	5	5	10	20	<5	Z 0	
Arsen	μg/l	14	14	20	60 ¹⁰⁾	<5	Z 0	
Blei	μg/l	40	40	80	200	<5	Z 0	
Cadmium	μg/l	1,5	1,5	3	6	<1	Z 0	
Chrom (ges.)	μg/l	12,5	12,5	25	60	<5	Z 0	
Kupfer	μg/l	20	20	60	100	<5	Z 0	
Nickel	μg/l	15	15	20	70	<5	Z 0	
Quecksilber	μg/l	< 0,5	< 0,5	1	2	<0,5	Z 0	
Zink	μg/l	150	150	200	600	<0,2	Z 0	
Phenolindex	μg/l	20	20	40	100	<10	Z 0	

Mutterboden, gesiebt Seite 1

SGS INSTITUT FRESENIUS GmbH Am Technologiepark 10 D-45699 Herten

GEOBAU GmbH Beratende Ingenieure und Geologen Seilfahrt 65 44809 Bochum Prüfbericht 7445511 Auftrags Nr. 7413646 Kunden Nr. 4401300

Marie-Therese Keil Telefon +49 1736361407 Fax Marie-Therese.Keil@sgs.com DAKS

Deutsche
Akkreditierungsstelle
D-PL-14115-02-02
D-PL-14115-02-03
D-PL-14115-02-06
D-PL-14115-02-06
D-PL-14115-02-00
D-PL-14115-02-10
D-PL-14115-02-13

Industries & Environment

SGS INSTITUT FRESENIUS GmbH Am Technologiepark 10 D-45699 Herten

Herten, den 23.05.2025

Ihr Auftrag/Projekt: B³ Quarzsandwerke GmbH, Sandgrube Halter

Ihr Bestellzeichen: .

Ihr Bestelldatum: 08.05.2025

Prüfzeitraum von 15.05.2025 bis 23.05.2025 erste laufende Probenummer 250483394 Probeneingang am 15.05.2025

SGS INSTITUT FRESENIUS GmbH

i.A. Marie-Therese Keil Customer Service i.A. Mareike Rieger Customer Service

Seite 1 von 6

HE

B³ Quarzsandwerke GmbH, Sandgrube Halter

Prüfbericht Nr. 7445511 Auftrag Nr. 7413646 Seite 2 von 6 23.05.2025

.

Probe 250483394 Probenmatrix Boden MP Füllsand 0 - 20 mm Eingangsdatum: 15.05.2025 Eingangsart von Ihnen übergeben Parameter Einheit Lab Beurteilung Ergebnis Bestimmungs-Methode grenze Feststoffuntersuchungen: Probenvorbereitung DIN 19747 ΗE Trockensubstanz 90,4 0,1 **DIN EN 14346** ΗE Masse-% Cyanide, ges. mg/kg TR < 0,1 0,1 **DIN EN ISO 17380** ΗE TOC Masse-% TR 0,1 0,1 **DIN EN 15936** HE Metalle im Feststoff: ΗE Königswasseraufschluß **DIN EN 13657 DIN EN 16170** 5 2 ΗE Arsen mg/kg TR Blei 8 2 **DIN EN 16170** ΗE mg/kg TR Cadmium mg/kg TR < 0,2 0.2 **DIN EN 16170** ΗE Chrom mg/kg TR 16 1 **DIN EN 16170** HE mg/kg TR 7 Kupfer 1 **DIN EN 16170** HE Nickel mg/kg TR 10 1 **DIN EN 16170** ΗE Quecksilber mg/kg TR < 0,1 0,1 **DIN EN ISO 12846** HE Thallium mg/kg TR < 0,2 0,2 **DIN EN 16171** HE Zink mg/kg TR 28 1 **DIN EN 16170** HE KW-Index C10-C40 mg/kg TR 12 10 **DIN EN 14039** ΗE KW-Index C10-C22 mg/kg TR < 10 10 **DIN EN 14039** ΗE DIN 38414-17 **EOX** mg/kg TR < 0,3 0,3 ΗE LHKW Headspace: cis-1,2-Dichlorethen mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** ΗE Dichlormethan mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** ΗE Tetrachlormethan mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** HE 1,1,1-Trichlorethan mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** HE Trichlorethen mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** ΗE Tetrachlorethen mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** ΗE Trichlormethan mg/kg TR < 0,005 0,005 **DIN EN ISO 22155** ΗE

Summe nachgewiesener mg/kg TR

LHKW

Prüfbericht Nr. 7445511 Auftrag 7413646 Probe 250483394 Seite 3 von 6 23.05.2025

Probe MP Füllsand 0 - 20 mm

Fortsetzung

Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab Beurteilung
BTEX Headspace :					
Benzol Toluol Ethylbenzol 1,2-Dimethylbenzol 1,3+1,4-Dimethylbenzol Summe Xylole Summe BTEX Styrol iso-Propylbenzol Summe nachgewiesener BTEX	mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR	< 0,01 < 0,01 < 0,01 < 0,01 < 0,02 - - < 0,01 < 0,01	0,01 0,01 0,01 0,01 0,02	DIN EN ISO 22155	HE HE HE HE HE HE HE HE
PAK (EPA) :					
Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benz(a)anthracen Chrysen Benzo(b)fluoranthen Benzo(a)pyren Dibenzo(a,h)anthracen Benzo(g,h,i)perylen Indeno(1,2,3-c,d)pyren Summe PAK nach EPA	mg/kg TR	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05	DIN ISO 18287	HE H
PCB:					
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Summe 6 PCB Summe PCB nachgewiesen	mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR mg/kg TR	< 0,003 < 0,003 < 0,003 < 0,003 < 0,003 < 0,003 -	0,003 0,003 0,003 0,003 0,003 0,003 0,003	DIN 38414-20 DIN 38414-20 DIN 38414-20 DIN 38414-20 DIN 38414-20 DIN 38414-20 DIN 38414-20 DIN 38414-20	HE HE HE HE HE HE HE HE

Prüfbericht Nr. 7445511 Auftrag 7413646 Probe 250483394 Seite 4 von 6 23.05.2025

•

Probe MP Füllsand 0 - 20 mm

Fortsetzung

Parameter Einheit Ergebnis Bestimmungs- Methode Lab Beurteilung

grenze

Eluatuntersuchungen:

Eluatansatz				DIN EN 12457-4	HE
pH-Wert		8,4		DIN EN ISO 10523	HE
Elektr.Leitfähigkeit (25°C)	μS/cm	83	1	DIN EN 27888	HE
Chlorid	mg/l	< 2	2	DIN ISO 15923-1	HE
Sulfat	mg/l	< 5	5	DIN ISO 15923-1	HE
Cyanide, ges.	mg/l	< 0,005	0,005	DIN EN ISO 14403-2	HE
Phenol-Index, wdf.	mg/l	< 0,01	0,01	DIN EN ISO 14402	HE

Metalle im Eluat :

Arsen	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Blei	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Cadmium	mg/l	< 0,001	0,001	DIN EN ISO 11885	HE
Chrom	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Kupfer	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Nickel	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Quecksilber	mg/l	< 0,0002	0,0002	DIN EN ISO 12846	HE
Zink	mg/l	< 0.01	0.01	DIN EN ISO 11885	HE

Prüfbericht Nr. 7445511 Auftrag Nr. 7413646 Seite 5 von 6 23.05.2025

Probe 250483394|EL7 Probenmatrix Boden

MP Füllsand 0 - 20 mm

Eingangsdatum: 15.05.2025 Eingangsart von Ihnen übergeben

Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab Beurteilung
Eluatuntersuchungen :					
Schütteleluat 2:1 (EL7) pH-Wert Elektr.Leitfähigkeit	μS/cm	8,1 173	1	DIN 19529 DIN EN ISO 10523 DIN EN 27888	HE HE HE
(25°C) Sulfat	mg/l	11	1	DIN EN ISO 10304-1	HE
Metalle im Eluat :	J				
Arsen	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Blei	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Cadmium	mg/l	< 0,001	0,001	DIN EN ISO 11885	HE
Chrom	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Kupfer	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Nickel	mg/l	< 0,005	0,005	DIN EN ISO 11885	HE
Quecksilber	mg/l	< 0,00003	0,00003	DIN EN ISO 12846	HE
Thallium	mg/l	< 0,00006	0,00006	DIN EN ISO 17294-2	HE
Zink	mg/l	< 0,01	0,01	DIN EN ISO 11885	HE
PAK im Eluat :					
Naphthalin	μg/l	< 0,002	0,002	DIN 38407-39	HE
1-Methylnaphthalin	μg/l	< 0,002	0,002	DIN 38407-39	HE
2-Methylnaphthalin	μg/l	< 0,002	0,002	DIN 38407-39	HE
Acenaphthylen	μg/l	< 0,050	0,05	DIN 38407-39	HE
Acenaphthen	μg/l	0,004	0,002	DIN 38407-39	HE
Fluoren	μg/l	< 0,002	0,002	DIN 38407-39	HE
Phenanthren	μg/l	0,002	0,002	DIN 38407-39	HE
Anthracen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Fluoranthen	μg/l	0,008	0,002	DIN 38407-39	HE
Pyren	μg/l	0,007	0,002	DIN 38407-39	HE
Benzo(a)anthracen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Chrysen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Benzo(b)fluoranthen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Benzo(k)fluoranthen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Benzo(a)pyren	μg/l	< 0,002	0,002	DIN 38407-39	HE
Dibenzo(a,h)anthracen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Benzo(g,h,i)perylen	μg/l	< 0,002	0,002	DIN 38407-39	HE
Indeno(1,2,3-c,d)pyren	μg/l	< 0,002	0,002	DIN 38407-39	HE
Summe PAK nach EPA	μg/l	0,021			HE
Summe PAK 15	μg/l	0,021			HE
Summe Naphthalin,	μg/l	-			HE

Methylnaphthaline

Einheit

Prüfbericht Nr. 7445511

Methode

Seite 6 von 6

Auftrag 7413646 Probe 250483394EL7 23.05.2025

Lab Beurteilung

Probe

MP Füllsand 0 - 20 mm

Ergebnis

Fortsetzung

Parameter

nachgewiesen

		J	grenze			J
PCB im Eluat :						
PCB 28	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 52	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 101	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 118	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 138	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 153	μg/l	< 0,001	0,001	DIN 38407-2	HE	
PCB 180	μg/l	< 0,001	0,001	DIN 38407-2	HE	
Summe PCB	μg/l	-			HE	

Bestimmungs-

Zusammenfassung der verwendeten Prüfmethoden:

DIN 19529	2015-12
DIN 19747	2009-07
DIN 38407-2	1993-02
DIN 38407-39	2011-09
DIN 38414-17	2017-01
DIN 38414-20	1996-01
DIN EN 12457-4	2003-01
DIN EN 13657	2003-01
DIN EN 14039	2005-01
DIN EN 14346	2007-03
DIN EN 15936	2012-11
DIN EN 16170	2017-01
DIN EN 16171	2017-01
DIN EN 27888	1993-11
DIN EN ISO 10304-1	2009-07
DIN EN ISO 10523	2012-04
DIN EN ISO 11885	2009-09
DIN EN ISO 12846	2012-08, Einsatz des Verfahrens ohne Verwendung des für Wasserproben eingesetzten Konservierungsmittels Bromat.
DIN EN ISO 12846	2012-08
DIN EN ISO 14402	1999-12
DIN EN ISO 14403-2	2012-10
DIN EN ISO 17294-2	2017-01
DIN EN ISO 17380	2013-10
DIN EN ISO 22155	2016-07
DIN ISO 15923-1	2014-07
DIN ISO 18287	2006-05

Die Laborstandorte mit den entsprechenden Akkreditierungsverfahrensnummern der SGS-Gruppe Deutschland und Schweiz gemäß den oben genannten Kürzeln sind aufgeführt unter

http://www.institut-fresenius.de/filestore/89/laborstandortkuerzelsgs.pdf.

Dieses Dokument wurde von der Gesellschaft im Rahmen ihrer Allgemeinen Geschäftsbedingungen für Dienstleistungen erstellt, die unter https://www.sgs.com/de-de/agb zugänglich sind. Es wird ausdrücklich auf die darin enthaltenen Regelungen zur Haftungsbegrenzung, Freistellung und zum Gerichtsstand hingewiesen. Dieses Dokument ist ein Original. Wenn das Dokument digital übermittelt wird, ist es als Original im Sinne der UCP 600 zu behandeln. Jeder Besitzer dieses Dokuments wird darauf hingewiesen, dass die darin enthaltenen Angaben ausschließlich die im Zeitpunkt der Dienstleistung von der Gesellschaft festgestellnen Tatsachen im Rahmen der Vorgaben des Kunden, sofern überhaupt vorhanden, wiedergeben. Die Gesellschaft ist allein dem Kunden gegenüber verantwortlich. Dieses Dokument entbindet die Parteien von Rechtsgeschäften nicht von ihren insoweit bestehenden Rechten und Pflichten. Jede nicht genehmigte Anderung, Fälschung oder Verzerrung des Inhalts oder des äußeren Erscheinungsbildes dieses Dokuments ist rechtswidrig. Ein Verstoß kann rechtlich geahndet werden.
Hinweis: Die Probe(n), auf die sich die hier dargelegten Erkenntnisse (die "Erkenntnisse") beziehen, wurde(n) ggf. durch den Kunden oder durch im Auftrag handelnde Dritte entnommen. In diesem Falle geben die Erkenntnisse keine Garantie für den repräsentativen Charakter der Probe bezüglich irgendwelcher Waren und beziehen sich ausschließlich auf die Probe(n). Die Gesellschaft übernimmt keine Haftung für den Ursprung oder die Quelle, aus der die Probe(n) angeblich/tatsächlich entnommen wurde(n).

^{***} Ende des Berichts ***

Probenahmeprotokoll in Anlehnung an LAGA- Richtlinie PN 98

1. Projekt	Sandgrube Halter	n-Lavesum, B ³ Qua	rzsandwerke GmbH		
1.1 Probenbezeichnung:	MP Füllsand 0 - 20 mm				
2. Auftraggeber:	B ³ Quarzsandwerk	ke GmbH			
2.1 Grund der Probenahme:	Verwertung				
3. Probenehmer:	M.Sc. Geogr. Stefa	an Bosselmann			
4. Datum:	08.05.2025	Uhrzeit: 11.40	Witterung: trocken,	18°C	
5. Materialart:	Sand				
6. Materialherkunft:	gewachsen	geschüttet X	sonstiges		
7. Vermutete Schadstoffe / Gefährdungen:					
8. Farbe:	gelb	Geruch: unauffäll	ig Konsistenz:	fest	
9. Korngröße:	0 - 20 mm	Kornform:	rund, eckig		
10. Lagerungsart	Haufwerk				
11. Einflüsse auf den Abfall (Witterung):12. Maßnahmen zur Lagerung:	ja 				
13. Voraussichtliche Lagerungsdauer:	keine Angabe				
14. Menge des beprobten Abfalls:	ca. 1000 m³				
15. Entnahmeart:	Probenschaufel				
16. Probenverpackung:	Eimer				
17. Probenmenge:	35 Einzelproben z	u einer Mischprob	e zusammengeführt	: (5 I)	

18. Anwesende:	Herr Bücker
•	

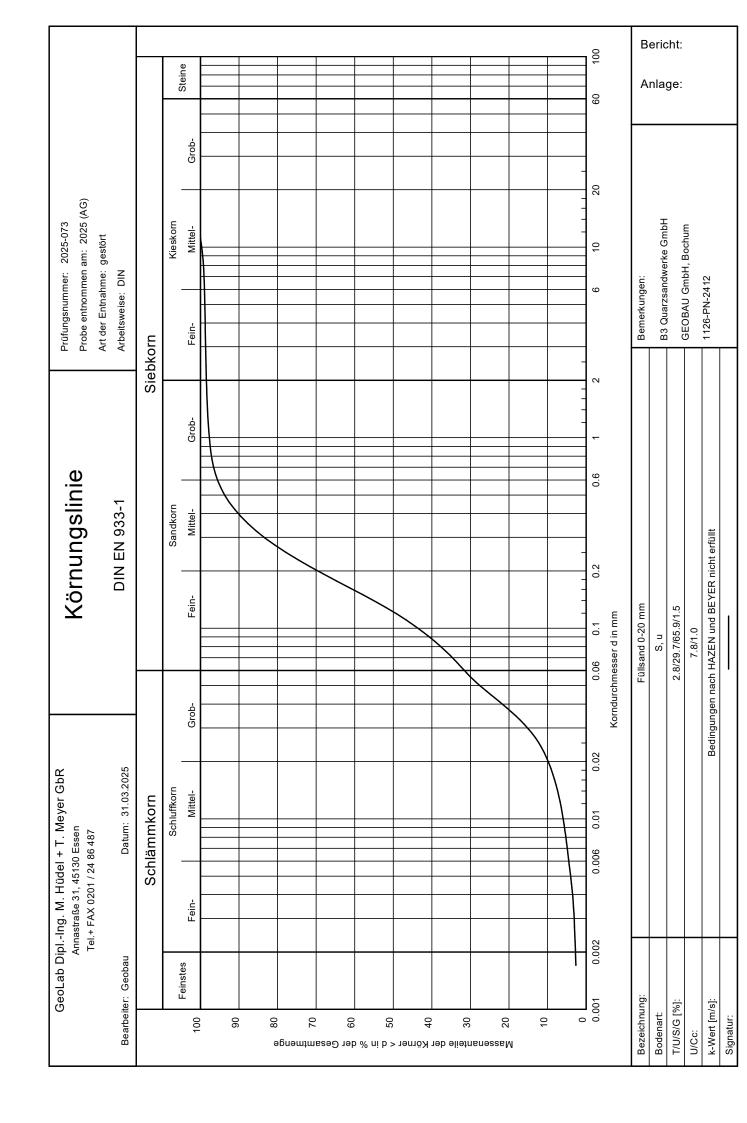
19. Beobachtungen: ___

20. Vorläufige Ergebnisse: keine

21. Hinweise zum weiteren
Umgang mit dem
Material:

22. Probenüberführung: Kurierdienst

23. Untersuchungslabor: Dr. Döring


23.1 Untersuchungsumfang: EBV - BM-0*, Vorsorgewerte BBodSchV

24. Lageskizze / Fotos:

25. Sonstiges:

26. Ort, Datum, Unterschrift: Bochum, 08.05.2025

